

WDMA HALLMARK CERTIFICATION PROGRAM REPORT SUBMISSION FORM

THIS FORM IS TO BE COMPLETED BY THE MANUFACTURER AND SUBMITTED TO AMS ALONG WITH SUBMISSION OF EACH NEW OR REVISED TEST REPORT FOR CERTIFICATION TO THE HALLMARK PROGRAM. ANY QUESTIONS PLEASE CONTACT AMS AT 315-646-2234 OR staff@amscert.com.

Manufacturer:			Contact:
Plant Location(s):			Phone:
Test Report #:			Email:
Product Relationship:			
Extension of currently certified product ?	yes	no	If yes, what CCL # ?
Extension of currently pending product ?	yes	no	If yes, what test report # ?
Difference from Certified Product:			
Does this report require a Gateway Report # ?	yes	no	Report #:-
Impact Report:			
If this is not an impact report check here:			
AWS Report #			
Test Plan # ?	yes	no	
Installation Instructions submitted ?	yes	no	

Additional Information:

WDMA HALLMARK CERTIFICATION PROGRAM REPORT SUBMISSION FORM

Product Name:

Product Type:

Additional Manufacturer ID #:

Check here for individual CCL listing

Check here for full CCL listing

Hallmark CCL

<u>Standard</u>

ANSI/AAMA/NWWDA 101/I.S. 2 97

101/I.S.2/NAFS-02

AAMA/WDMA/CSA/101/I.S.2/A440-05

AAMA/WDMA/CSA/101/I.S.2/A440-08

ASTM E 1996 99 / E1886-97

ASTM E 1996 01 / E1886-97

ASTM E 1996 02 / E1886-02

ASTM E 1996 03 / E1886-02

ASTM E 1996 04 / E1886-04

ASTM E 1996 05 / E1886-05

ASTM E330 02

TAS 201-94

TAS 202-94

TAS 203-94

AAMA 450-06

Other:

n/a

Rating

MIAMI-DADE COUNTY PERFORMANCE TEST REPORT

Rendered to:

KML WINDOWS, INC.

SERIES/MODEL: Coastal Aluminum Clad Casement PRODUCT TYPE: Aluminum Clad Wood Casement with Impact Glazing

This report contains in its entirety: Cover Page: 1 page Report Body: 21 pages Sketches: 2 pages Drawings: 19 pages

Report No.:	91032.05-201-44
Test Dates:	03/24/10
And:	03/25/10
Report Date:	07/06/10
Test Record Retention Date:	03/25/20
Miami-Dade County Notification No.:	ATIMN 09015

849 Western Avenue North St. Paul, MN 55117 phone: 651-636-3835 fax: 651-636-3843 www.archtest.com

MIAMI-DADE COUNTY PERFORMANCE TEST REPORT

Rendered to:

KML WINDOWS, INC. 71 Second Street Strathroy, Ontario N7G 3H8 CANADA

Report No.:	91032.05-201-44
Test Dates:	03/24/10
And:	03/25/10
Report Date:	07/06/10
Test Record Retention Date:	03/25/20
Miami-Dade County Notification No.:	ATIMN 09015

Project Summary: Architectural Testing, Inc. was contracted by KML Windows, Inc. to perform testing per Florida Building Code, Test Protocols for High Velocity Hurricane Zone, Protocols TAS 201-94, TAS 202-94 and TAS 203-94 on four Series/Model Coastal Aluminum Clad Casement, aluminum clad wood casement with impact glazing windows. The samples tested met the performance requirements set forth in the protocols for a +50.0/-65.0 psf *Design Pressure* rating. Test specimen description and results are reported herein. The samples were provided by the client.

Test Procedures: The test specimens were evaluated in accordance with the following:

TAS 201-94, Impact Test Procedures.

TAS 202-94, Criteria for Testing Impact and Non Impact Resistant Building Envelope Components Using Uniform Static Air Pressure Loading.

TAS 203-94, Criteria for Testing Products Subject to Cyclic Wind Pressure Loading.

Drawing Reference: The test specimen drawings have been reviewed and verified by Architectural Testing and are representative of the samples tested.

Test Specimen Description:

Series/Model: Coastal Aluminum Clad Casement

Product Type: Aluminum Clad Wood Casement with Impact Glazing

849 Western Avenue North St. Paul, MN 55117 phone: 651-636-3835 fax: 651-636-3843 www.archtest.com

Test Specimen Description: (Continued)

Overall Size: 913 mm (35-15/16") wide by 1829 mm (72") high

Sash Size: 864 mm (34") wide by 1778 mm (70") high

Overall Area: 1.7 m² (18.0 ft²)

Finish: The exterior cladding was painted and interior wood was unfinished.

Frame Construction: The frame was comprised of pine members with the corners step/butted, sealed with silicone and secured with three #8 x 2" screws per corner. Aluminum cladding was miter-cut and snap-fit onto frame members and secured with 1/4" x 3/8" staples located 51 mm (2") from corners and 203 mm (8") on center. The corners of the cladding were secured with two #6 x 3/4" screws per corner.

Sash Construction: The interior consisted of pine members with mortise and tenon joinery secured with one $7/16" \ge 1-1/2"$ staple. The exterior was extruded aluminum cladding that was miter-cut and secured with one #6 $\ge 3/4"$ screw through clad stiles into the clad rails. The cladding was secured to the wood sash with #6 $\ge 3/4"$ screws in the glazing pocket 51 mm (2") from each corner and spaced 152 mm (6") on center.

Weatherstripping:

<u>Description</u>	<u>Quantity</u>	Location
Q-Lon	1 Row	Perimeter of frame
Vinyl leaf	1 Row	Perimeter of sash

Glazing Details:

Test Unit #1: The window was glazed with 16 mm (0.648") insulating glass comprised of a 3.0 mm annealed exterior sheet and a 10.1 mm laminated sheet on the interior separated by a silicone foam spacer system. The laminated sheet was comprised of two 3.9 mm annealed sheets separated by a 2.3 mm (0.090") Cardinal Sea-Storm® PVB interlayer. The glass was set from the interior into a bed of Dow Corning 995 structural sealant. Structural sealant was also used around the full perimeter in the glazing cavity. Wood glazing beads with 1.5 mm by 13 mm (1/16" by 1/2") acrylic double sided adhesive glazing tape were secured with 31 mm (1-1/4") brad nails 51 mm (2") from each corner and spaced 203 mm (8") on center. The glass bite was 1/2".

Test Specimen Description: (Continued)

Glazing Details: (Continued)

Test Unit #2: The window was glazed with 16 mm (0.648") insulating glass comprised of a 3.0 mm tempered exterior sheet and a 10.1 mm laminated sheet on the interior separated stainless steel spacer system. The laminated sheet was comprised of two 3.9 mm annealed sheets separated by a 2.3 mm (0.090") Cardinal Sea-Storm® PVB interlayer. The glass was set from the interior into a bed of Dow Corning 995 structural sealant. Structural sealant was also used around the full perimeter in the glazing cavity. Wood glazing beads with 1.5 mm by 13 mm (1/16" by 1/2") acrylic double-sided adhesive glazing tape were secured with 31 mm (1-1/4") brad nails 51 mm (2") from each corner and spaced 203 mm (8") on center. The glass bite was 1/2".

Test Unit #3 and Test Unit #4: The unit was glazed with 10.1 mm laminated monolithic glass comprised of two 3.9 mm annealed sheets with a 2.3 mm (0.090") Cardinal Sea-Storm® PVB interlayer. The glass was set from the interior into a bed of Dow Corning 995 structural sealant. Structural sealant was also used around the full perimeter in the glazing cavity. Wood glazing beads with 1.5 mm by 13 mm (1/16" by 1/2") acrylic double-sided adhesive glazing tape were secured with 31 mm (1-1/4") brad nails 51 mm (2") from each corner and spaced 203 mm (8") on center. The glass bite was 1/2".

Drainage: No drainage was utilized.

Hardware:

Description	Quantity	Location
4-point lock	1	Locking stile of frame and sash 254 mm (10") from top and bottom of sash and 762 mm (30") and 1295 mm (51") from bottom of sash
Butt hinges	3	Hinge stile of frame and sash 203 mm (8") from head and sill and midpoint
Roto hardware	1	Sill

Reinforcement: No reinforcement was utilized.

Test Specimen Description: (Continued)

Test Unit #4 Mullion Construction: The unit was mulled jamb to jamb. Two beads of Dow Corning 1199 were utilized; one between the cladding at the nail flange kerf and the other at the accessory kerf. The units were secured on the exterior with a U-shaped aluminum piece that was snap-fit to the accessory kerf. The interior was secured through each jamb with $\#6 \ge 1-3/4"$ screws staggered 4" on center from each end and spaced 12" on center. The interior was additionally secured with 1" $\ge 1/2"$ corrugated staples 2" from each end and spaced 8" on center. The mullion ends were sealed with silicone.

Installation:

Test Unit #1 and Test Unit #3: The windows were installed within Spruce-Pine-Fir test bucks and secured with steel installation clips. The clips were secured to the window frame with three #8 x 3/4" screws. The clips were located 152 mm (6") from corners and midspan on jambs and 152 mm (6") from corners on the head and sill. The installation clips were secured to the buck on the interior with two #8 x 1-1/2" screws and on the exterior, through the nail flange and through the clip, with one #8 x 1-1/2" screw. Test unit was additionally secured through nail fin with 1-1/2" roofing nails 102 mm (4") from corners and spaced 305 mm (12") on center. The nail fin was sealed to the buck with silicone.

Test Unit #2 and Test Unit #4: The windows were installed within Spruce-Pine-Fir test bucks. The test unit was secured through the frame with $#10 \times 3"$ screws 152 mm (6") from each corner and spaced 305 mm (12") on center. Test unit was additionally secured through nail fin with 1-1/2" roofing nails 102 mm (4") from corners and spaced 305 mm (12") on center. The nail fin was sealed to the buck with silicone.

Protocol TAS 202-94, Static Air Pressure Tests

Test Unit #1

Design Pressure: +50.0/-65.0 psf

Title of Test	Results						
	Indicator Readings (inch)						
Structural Loads	#1	#2	#3	#4	#5	#6	
50% of Test Pressure (+37.5 psf)							
Maximum Deflection	0.04	0.04	0.01	0.01	0.01	0.05	
Permanent Set	0.01	0.01	0.01	0.01	0.01	0.01	
Design Pressure (+50.0 psf)							
Maximum Deflection	0.05	0.05	0.02	0.01	0.02	0.05	
Permanent Set	0.02	0.01	0.02	0.01	0.01	0.01	
50% of Test Pressure (-48.75 psf)							
Maximum Deflection	0.06	0.06	0.03	0.01	0.02	0.10	
Permanent Set	0.01	0.01	0.01	0.01	0.01	0.02	
Design Pressure (-65.0 psf)							
Maximum Deflection	0.08	0.07	0.03	0.02	0.03	0.11	
Permanent Set	0.02	0.02	0.01	0.01	0.01	0.03	
Test Pressure (+75.0 psf)							
Maximum Deflection	0.08	0.07	0.04	0.01	0.03	0.08	
Permanent Set	0.02	0.02	0.02	0.01	0.01	0.08	
Test Pressure (-97.5 psf)							
Maximum Deflection	0.17	0.16	0.09	0.05	0.07	0.24	
Permanent Set	0.04	0.03	0.01	0.03	0.02	0.05	

Note: See Architectural Testing Sketch #1 for indicator locations.

Protocol TAS 202-94, Static Air Pressure Tests

Test Unit #2

Design Pressure: +50.0/-65.0 psf

Title of Test	Results						
	Indicator Readings (inch)						
Structural Loads	#1 #2 #3 #4 #5 #6						
50% of Test Pressure (+37.5 psf)							
Maximum Deflection	0.05 0.05 0.02 0.01 0.02 0.05						
Permanent Set	0.01 0.01 0.01 <0.01 <0.01 0.01						
Design Pressure (+50.0 psf)							
Maximum Deflection	0.07 0.07 0.03 0.01 0.03 0.07						
Permanent Set	0.01 0.02 0.01 <0.01 <0.01 0.01						
50% of Test Pressure (-48.75 psf)							
Maximum Deflection	0.06 0.08 0.03 0.01 0.03 0.08						
Permanent Set	<0.01 0.01 <0.01 <0.01 <0.01 0.01						
Design Pressure (-65.0 psf)							
Maximum Deflection	0.09 0.12 0.06 0.02 0.04 0.11						
Permanent Set	0.01 0.02 0.01 0.01 0.01 0.02						
Test Pressure (+75.0 psf)							
Maximum Deflection	0.10 0.13 0.06 0.02 0.04 0.11						
Permanent Set	0.01 0.02 0.02 0.01 0.01 0.01						
Test Pressure (-97.5 psf)							
Maximum Deflection	0.19 0.25 0.17 0.06 0.07 0.21						
Permanent Set	0.01 0.03 0.02 0.05 0.02 0.03						

Note: See Architectural Testing Sketch #1 for indicator locations.

Protocol TAS 202-94, Static Air Pressure Tests

Test Unit #3	
Design Pressure :	+50.0/-65.0 psf

Title of Test	Results
Air Infiltration 1.57 psf (25 mph) 6.24 psf (50 mph)	$<0.01 \text{ cfm/ft}^2$ $<0.01 \text{ cfm/ft}^2$
	Indicator Readings (inch)
Structural Loads 50% of Test Pressure (+37.5 psf)	#1 #2 #3 #4 #5 #6
Maximum Deflection	0.05 0.04 0.01 0.01 0.02 0.06
Permanent Set	0.01 0.01 <0.01 <0.01 <0.01 0.01
Design Pressure (+50.0 psf)	
Maximum Deflection	0.08 0.07 0.02 0.01 0.03 0.08
Permanent Set	0.01 0.01 <0.01 <0.01 <0.01 0.01
50% of Test Pressure (-48.75 psf)	
Maximum Deflection	0.09 0.10 0.05 0.02 0.03 0.13
Permanent Set	0.01 0.02 0.01 0.01 0.01 0.02
Design Pressure (-65.0 psf)	
Maximum Deflection	0.10 0.12 0.07 0.03 0.04 0.15
Permanent Set	0.01 0.01 0.01 0.01 0.01 0.02
Water Infiltration	
15% Positive Design Pressure (+7.50 psf)	No Penetration
Test Pressure (+75.0 psf)	
Maximum Deflection	0.09 0.09 0.04 0.02 0.05 0.10
Permanent Set	0.02 0.01 0.01 0.01 0.01 0.02
Test Pressure (-97.5 psf)	
Maximum Deflection	0.20 0.20 0.08 0.06 0.07 0.24
Permanent Set	0.04 0.04 0.01 0.05 0.01 0.02
Forced Entry - ASTM F 588-97	Pass

Note: See Architectural Testing Sketch #1 for indicator locations.

Protocol TAS 202-94, Static Air Pressure Tests

Test Unit #4 Design Pressure: +50.0/-65.0 psf

Title of Test	Results
Air Infiltration 1.57 psf (25 mph) 6.24 psf (50 mph)	$<0.01 \text{ cfm/ft}^2$ $<0.01 \text{ cfm/ft}^2$
	Indicator Readings (inch)
Structural Loads	<u>#1 #2 #3 #4 #5</u>
50% of Test Pressure (+37.5 psf)	
Maximum Deflection	0.04 0.15 0.03 0.04 0.05
Permanent Set	0.01 0.01 0.01 0.01 0.01
	#6 #7 #8 #9
	0.02 0.10 0.11 0.00
Maximum Deflection Permanent Set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fermanent Set	0.01 0.01 0.01 0.01
	#1 #2 #3 #4 #5
Design Pressure (+50.0 psf)	
Maximum Deflection	0.06 0.21 0.04 0.06 0.06
Permanent Set	0.01 0.02 0.01 0.01 0.01
	#6 #7 #8 #9
Maximum Deflection	0.04 0.12 0.15 0.10
Permanent Set	0.01 0.01 0.01 0.01
50% of Test Pressure (-48.75 psf)	#1 #2 #3 #4 #5
Maximum Deflection	0.07 0.22 0.03 0.08 0.08
Permanent Set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
i enhalent Set	0.01 0.02 0.01 0.03 0.02
	#6 #7 #8 #9
Maximum Deflection Permanent Set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
rennanent set	0.05 0.01 0.02 0.02

Protocol TAS 202-94, Static Air Pressure Tests

Test Unit #4 (Continued) **Design Pressure**: +50.0/-65.0 psf

Title of Test	Results					
	#1	#2	#3	#4	#5	
Design Pressure (-65.0 psf)						
Maximum Deflection	0.10	0.32	0.04	0.10	0.10	
Permanent Set	0.02	0.03	0.01	0.03	0.02	
	#6	#7		#8	#9	
Maximum Deflection	0.10	0.16	5 (0.20	0.27	
Permanent Set	0.04	0.02	2 (0.03	0.03	
Water Infiltration						
15% Positive Design Pressure (+7.50 psf)		No F	Penetra	ation		
	#1	#2	#3	#4	#5	
Test Pressure (+75.0 psf)						
Maximum Deflection	0.10	0.34	0.06	0.09	0.07	
Permanent Set	0.02	0.03	0.02	0.02	0.03	
	#6	#7		#8	#9	
Maximum Deflection	0.10	0.18	3 (0.23	0.14	
Permanent Set	0.03	0.01		0.02	0.02	
	#1	#2	#3	#4	#5	
Test Pressure (-97.5 psf)			_			
Maximum Deflection	0.18	0.56	0.08	0.13	0.14	
Permanent Set	0.02	0.06	0.02	0.03	0.03	
	#6	#7		#8	#9	
Maximum Deflection	0.10	0.30) (0.33	0.38	
Permanent Set	0.10	0.05		0.04	0.05	
Forced Entry ASTME 588 07	Doco					

Forced Entry - ASTM F 588-97

Pass

Note: See Architectural Testing Sketch #1 for indicator locations.

91032.05-201-44 Page 10 of 21

Test Results: (Continued)

Protocol TAS 201-94, Impact Test Procedures

Conditioning Temperature: 68°F Missile Weight: 9.2 lbs Missile Length: 96-1/2" Muzzle Distance from Test Specimen: 16'0"

Test Unit #1

Impact #1: Missile Velocity: 49.3 fps

Impact Area: Center of glazing **Observations**: No rips, tears or penetrations

Results: Pass

Impact #2: Missile Velocity: 49.6 fps

Impact Area: Lower right corner of glazing **Observations**: No rips, tears or penetrations

Results: Pass

Note: Refer to Architectural Testing Sketch #2 for impact locations.

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Unit #1

Design Pressure: +50.0/-65.0 psf

Pressure	Number of	Average Cycle Time	Maximum Deflection at Indicator (inch)					
Range (psf)	Cycles	(sec.)	#1	#2	#3	#4	#5	#6
10.0 to 25.0	3500	1.46	0.05	0.05	0.04	0.03	0.02	0.08
0 to 30.0	300	1.42	0.06	0.06	0.05	0.04	0.04	0.09
25.0 to 40.0	600	1.58	0.06	0.07	0.06	0.05	0.05	0.10
15.0 to 50.0	100	1.37	0.07	0.08	0.06	0.06	0.09	0.12
			Permanent Set (inch)					
			0.03	0.02	0.02	0.02	0.01	0.02

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure Range	Number of	Average Maximum Deflection at Indicator (inch					h)	
(psf)	Cycles	(sec.)	#1	#2	#3	#4	#5	#6
19.5 to 65.0	50	1.53	0.10	0.13	0.04	0.03	0.05	0.14
32.5 to 52.0	1050	1.13	0.07	0.11	0.03	0.02	0.04	0.11
0 to 39.0	50	1.41	0.06	0.09	0.03	0.02	0.04	0.09
13.0 to 32.5	3350	1.09	0.05	0.08	0.02	0.01	0.03	0.08
			Permanent Set (inch)					
			0.03	0.03	0.01	0.01	0.01	0.02

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

91032.05-201-44 Page 12 of 21

Test Results: (Continued)

Protocol TAS 201-94, Impact Test Procedures

Conditioning Temperature: 68°F Missile Weight: 9.2 lbs Missile Length: 96-1/2" Muzzle Distance from Test Specimen: 16'0"

Test Unit #2

Impact #1: Missile Velocity: 49.2 fps

Impact Area: Center of glazing **Observations**: No rips, tears or penetrations

Results: Pass

Impact #2: Missile Velocity: 49.8 fps

Impact Area: Upper left corner of glazing **Observations**: No rips, tears or penetrations

Results: Pass

Note: Refer to Architectural Testing Sketch #2 for impact locations.

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Unit #2

Design Pressure: +50.0/-65.0 psf

		10		NESSUN				
Pressure Range	Number of	Average Cycle Time	Maximum Deflection at Indicator (inch)					l)
(psf)	Cycles	(sec.)	#1	#2	#3	#4	#5	#6
10.0 to 25.0	3500	1.90	0.07	0.07	0.02	0.03	0.03	0.05
0 to 30.0	300	1.64	0.08	0.08	0.02	0.03	0.04	0.06
25.0 to 40.0	600	2.16	0.09	0.09	0.03	0.04	0.05	0.07
15.0 to 50.0	100	1.72	0.10	0.10	0.04	0.05	0.06	0.08
			Permanent Set (inch)					
			0.01	0.01	< 0.01	0.01	0.01	0.01

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure Range	Number of	AverageMaximum Deflection at Indicator (Cycle Time						h)
(psf)	Cycles	(sec.)	#1	#2	#3	#4	#5	#6
19.5 to 65.0	50	2.18	0.18	0.23	0.13	0.04	0.05	0.16
32.5 to 52.0	1050	1.96	0.16	0.20	0.12	0.03	0.04	0.13
0 to 39.0	50	2.47	0.15	0.19	0.10	0.02	0.03	0.11
13.0 to 32.5	3350	1.94	0.14	0.18	0.09	0.02	0.02	0.10
			Permanent Set (inch)					
			0.07	0.08	0.07	0.02	0.02	0.04

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

91032.05-201-44 Page 14 of 21

Test Results: (Continued)

Protocol TAS 201-94, Impact Test Procedures

Conditioning Temperature: 68°F Missile Weight: 9.2 lbs Missile Length: 96-1/2" Muzzle Distance from Test Specimen: 16'0"

Test Unit #3

Impact #1: Missile Velocity: 49.8 fps

Impact Area: Center of glazing **Observations**: No rips, tears or penetrations

Results: Pass

Impact #2: Missile Velocity: 49.2 fps

Impact Area: Lower left corner of glazing **Observations**: No rips, tears or penetrations

Results: Pass

Note: Refer to Architectural Testing Sketch #2 for impact locations.

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Unit #3

Design Pressure: +50.0/-65.0 psf

		10		NESSUN				
Pressure Range	Number of	Average Cycle Time	Maximum Deflection at Indicator (inch)					1)
(psf)	Cycles	(sec.)	#1	#2	#3	#4	#5	#6
10.0 to 25.0	3500	1.90	0.07	0.07	0.02	0.02	0.03	0.07
0 to 30.0	300	1.64	0.08	0.08	0.03	0.02	0.04	0.07
25.0 to 40.0	600	2.16	0.09	0.09	0.04	0.02	0.04	0.08
15.0 to 50.0	100	1.72	0.10	0.10	0.05	0.03	0.05	0.08
			Permanent Set (inch)					
			0.01	0.01	0.01	0.01	0.01	0.01

POSITIVE PRESSURE

NEGATIVE PRESSURE

Pressure Range	Number of	AverageMaximum Deflection at Indicator (inCycle TimeIndicator (in						h)
(psf)	Cycles	(sec.)	#1	#2	#3	#4	#5	#6
19.5 to 65.0	50	2.18	0.14	0.14	0.05	0.03	0.05	0.17
32.5 to 52.0	1050	1.96	0.11	0.11	0.04	0.02	0.04	0.14
0 to 39.0	50	2.47	0.10	0.10	0.03	0.02	0.03	0.13
13.0 to 32.5	3350	1.94	0.09	0.09	0.03	0.02	0.02	0.11
			Permanent Set (inch)					
			0.03	0.02	0.02	0.01	0.01	0.04

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

91032.05-201-44 Page 16 of 21

Test Results: (Continued)

Protocol TAS 201-94, Impact Test Procedures

Conditioning Temperature: 68°F Missile Weight: 9.2 lbs Missile Length: 96-1/2" Muzzle Distance from Test Specimen: 16'0"

Test Unit #4

Impact #1: Missile Velocity: 49.1 fps

Impact Area: Left sash, center of glazing. **Observations**: No rips, tears or penetrations

Results: Pass

Impact #2: Missile Velocity: 49.6 fps

Impact Area: Left sash, lower right corner of glazing. **Observations**: No rips, tears or penetrations

Results: Pass

Impact #3: Missile Velocity: 49.1 fps

Impact Area: Midspan of mullion **Observations**: No structural damage

Results: Pass

Note: Refer to Architectural Testing Sketch #2 for impact locations.

Protocol TAS 203-94, Cyclic Wind Pressure Loading

Test Unit #4

Design Pressure: +50.0/-65.0 psf

IOSITIVE I RESSORE								
Pressure	Number of	Average	Maximum Deflection at Indicator (inch)					
Range (psf)	Cycles	Cycle Time (sec.)	#1	#2	#3	#4	#5	
10.0 to 25.0	3500	1.42	0.02	0.17	0.02	0.04	0.04	
0 to 30.0	300	1.49	0.02	0.18	0.03	0.05	0.05	
25.0 to 40.0	600	1.41	0.05	0.22	0.03	0.07	0.05	
15.0 to 50.0	100	1.47	0.06	0.27	0.03	0.07	0.05	
			Permanent Set (inch)					
			0.01	0.03	0.01	0.02	0.01	

POSITIVE PRESSURE

Pressure Range	Number of	Average Cycle Time	Maximum Deflection at Indicator (inch)				
(psf)	Cycles	(sec.)	#6	#7	#8	#9	
10.0 to 25.0	3500	1.42	0.02	0.06	0.08	0.11	
0 to 30.0	300	1.49	0.03	0.07	0.08	0.12	
25.0 to 40.0	600	1.41	0.04	0.07	0.11	0.12	
15.0 to 50.0	100	1.47	0.05	0.09	0.13	0.12	
			Permanent Set (inch)				
			0.02	0.01	0.01	0.01	

Test Unit #4 (Continued)

Design Pressure: +50.0/-65.0 psf

NEGATIVETRESSURE							
Pressure	Number of	Average	Maximum Deflection at Indicator (inch)				
Range (psf)	Cycles	Cycle Time (sec.)	#1	#2	#3	#4	#5
19.5 to 65.0	50	1.47	0.10	0.55	0.05	0.14	0.12
32.5 to 52.0	1050	1.16	0.08	0.47	0.04	0.13	0.09
0 to 39.0	50	1.60	0.06	0.38	0.04	0.10	0.07
13.0 to 32.5	3350	1.20	0.05	0.37	0.03	0.08	0.06
			Permanent Set (inch)				
			0.02	0.12	0.02	0.03	0.02

NEGATIVE PRESSURE

Pressure	Number of	Average Cycle Time	Maximum Deflection at Indicator (inch)					
Range (psf)	Cycles	(sec.)	#6	#7	#8	#9		
19.5 to 65.0	50	1.47	0.05	0.18	0.30	0.31		
32.5 to 52.0	1050	1.16	0.05	0.15	0.26	0.26		
0 to 39.0	50	1.60	0.04	0.12	0.21	0.21		
13.0 to 32.5	3350	1.20	0.03	0.11	0.19	0.18		
			Permanent Set (inch)					
			0.02	0.03	0.08	0.08		

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

Test Equipment:

Cannon: Steel pipe barrel utilizing compressed air to propel the missile

Missile: 2x4 Southern Pine

Timing Device: Electronic Beam Type

Cycling Mechanism: Computer controlled centrifugal blower with electronic pressure measuring device

Deflection Measuring Device: Linear transducers

Laboratory Compliance Statements: The following are provided as required by the protocols for the testing reported herein.

Upon completion of testing, specimens tested for TAS 201-94 met the requirements of Section 1626 of the Florida Building Code.

Upon completion of testing, specimens tested for TAS 202-94 met the requirements of Section 1620 of the Florida Building Code.

Upon completion of testing, specimens tested for TAS 203-94 met the requirements of Section 1626 of the Florida Building Code.

Tape and film were used to seal against air leakage during structural testing. In our opinion, the tape and film did not influence the results of the test.

Testing was conducted at the Architectural Testing, Inc. laboratory located in St. Paul, Minnesota.

List of Official Observers:

Name

Gene Loubert Jon P. Kasuboski Tony D. Gavin Karl A. Lips-Eakins Joseph A. Reed, P.E. Eric J. Schoenthaler

Company

KML Windows, Inc. Architectural Testing, Inc.

Detailed drawings, data sheets, representative samples of test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of ten years from the original test date. At the end of this retention period, such materials shall be discarded without notice and the service life of this report will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen(s) tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

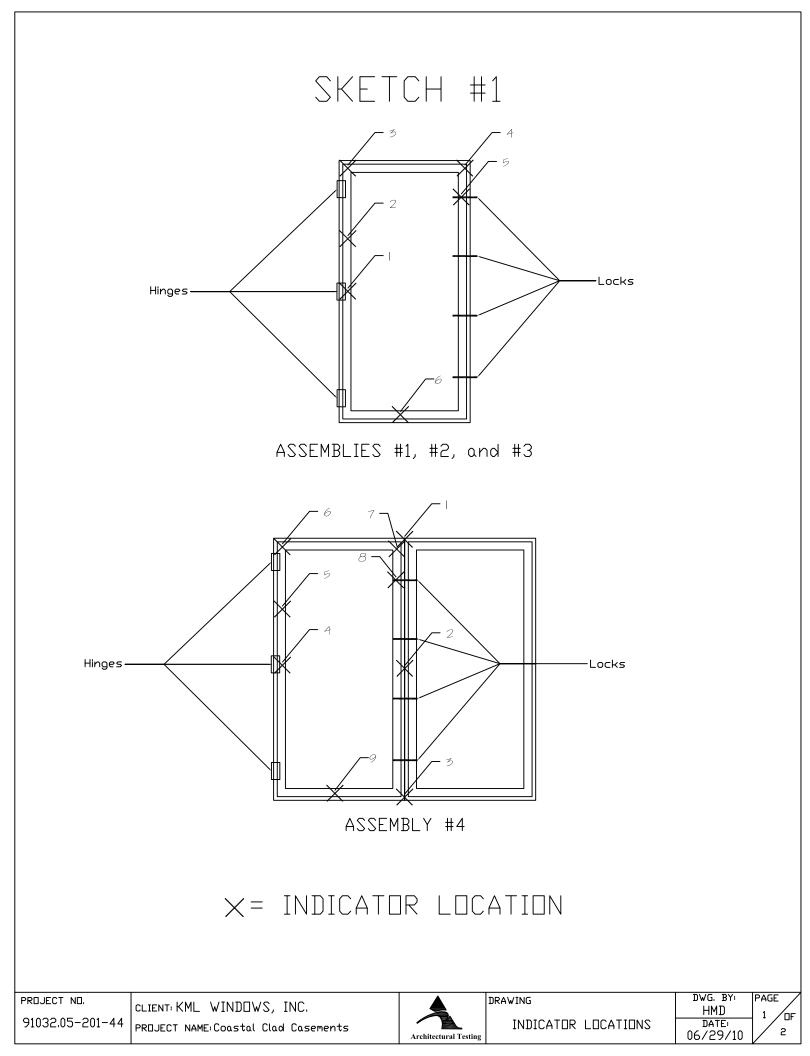
Eric J. Schoenthaler Project Manager Joseph A. Reed, P.E. Director - Engineering and Product Testing

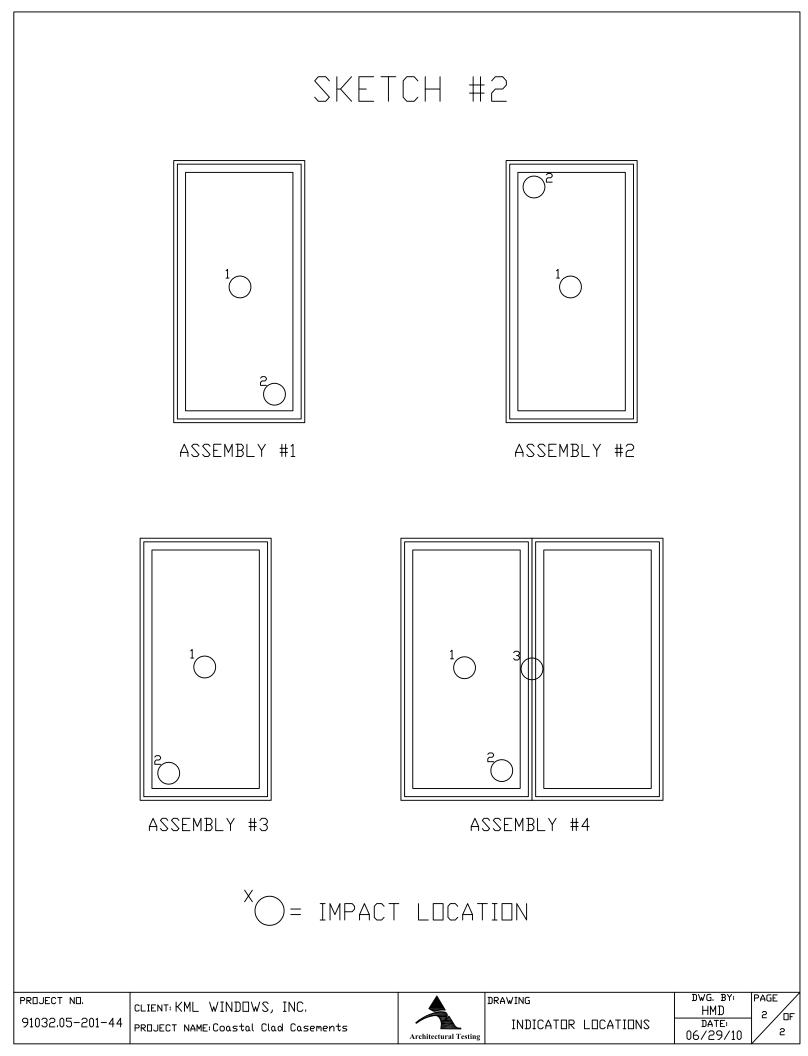
EJS:es/cmd

Attachments (pages): This report is complete only when all attachments listed are included. Appendix-A: Sketches (2) Appendix-B: Drawings (19)

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)
0	07/06/10	N/A	Original report issue. Report and drawings forwarded to AMS for Hallmark Certification.

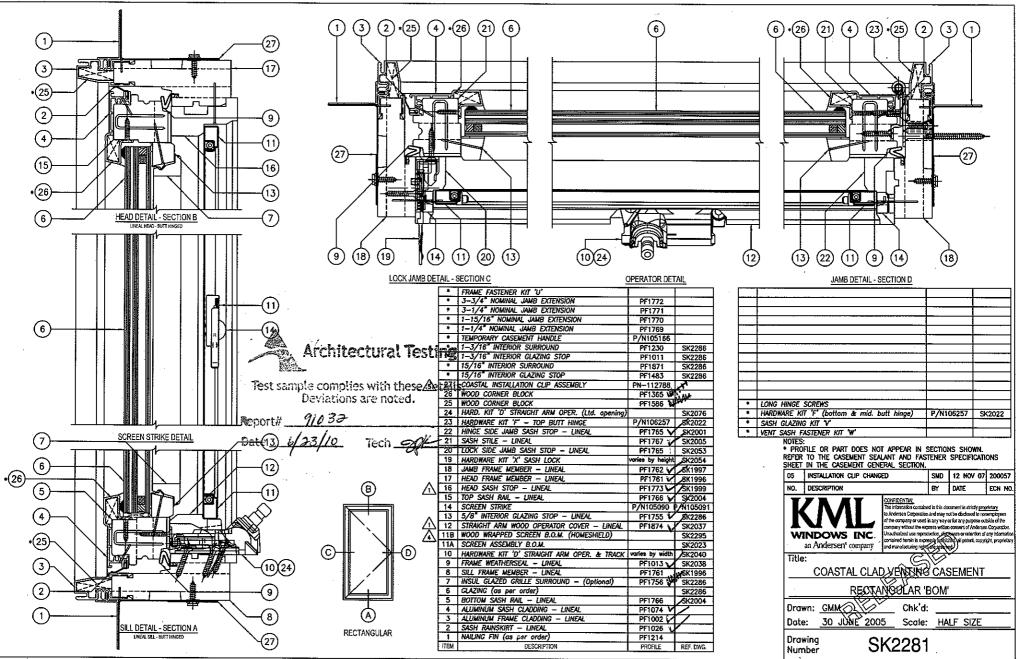

This report produced from controlled document ATI 00173, revised 05/22/09.



91032.05-201-44

Appendix A

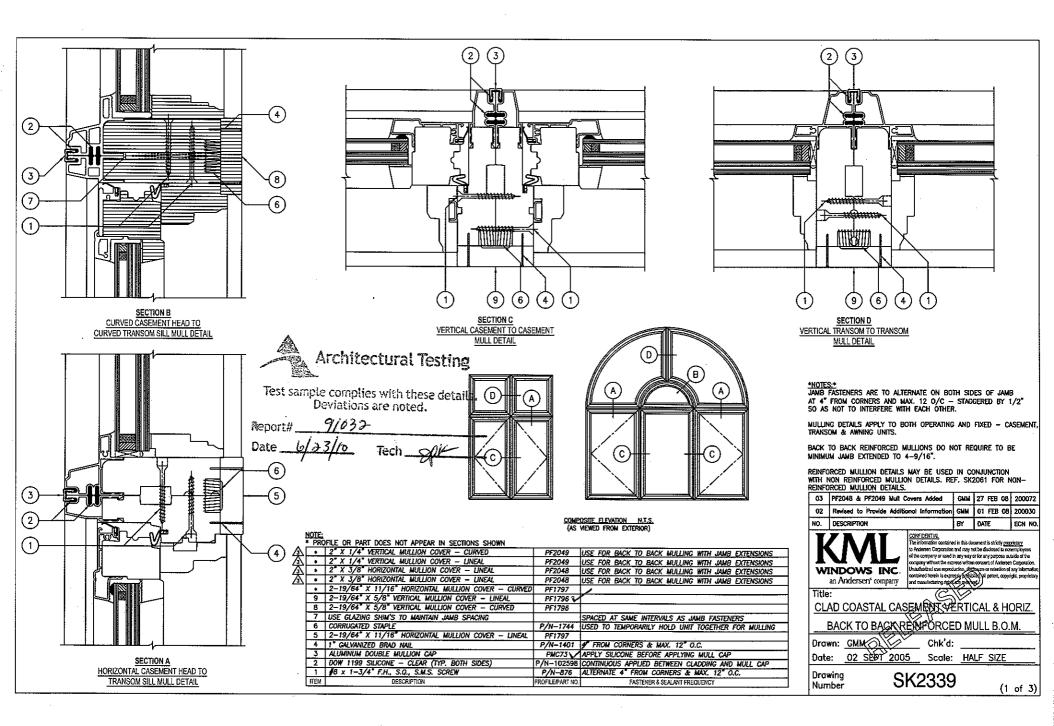
Sketches



91032.05-201-44

Appendix B

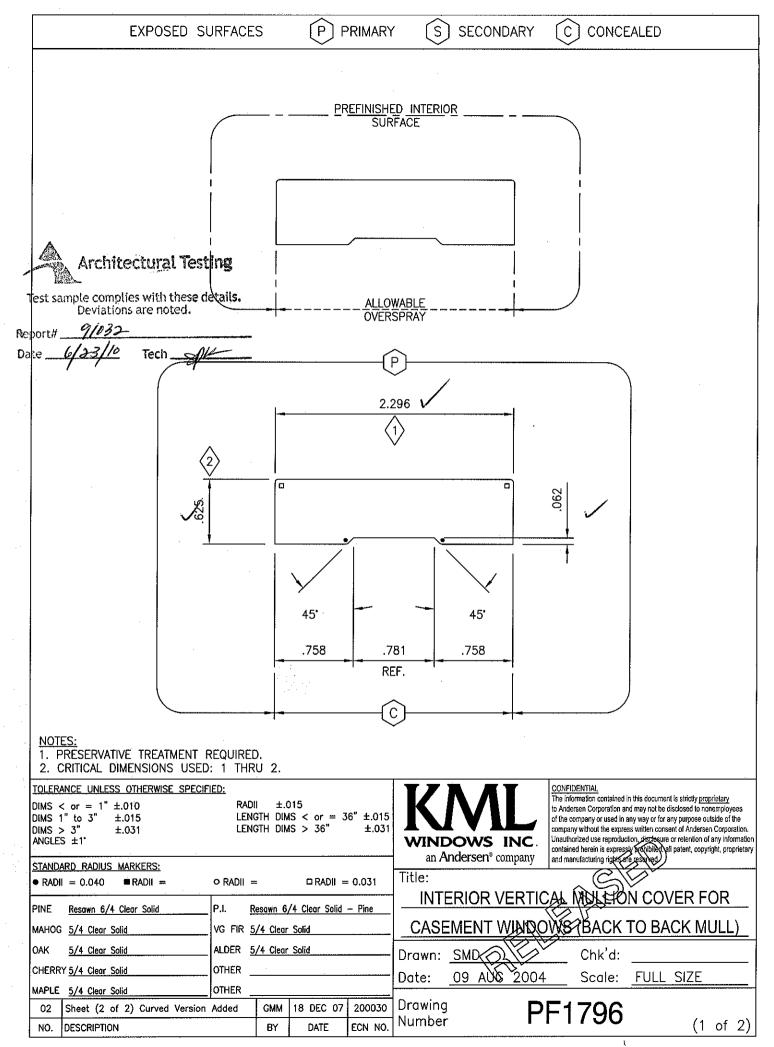
Drawings

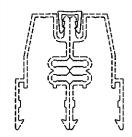


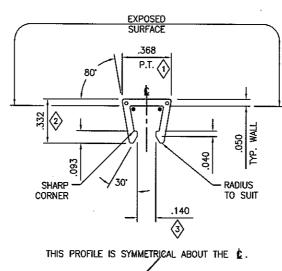
.

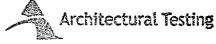
, ·

 $(1-e^{-i\theta})$

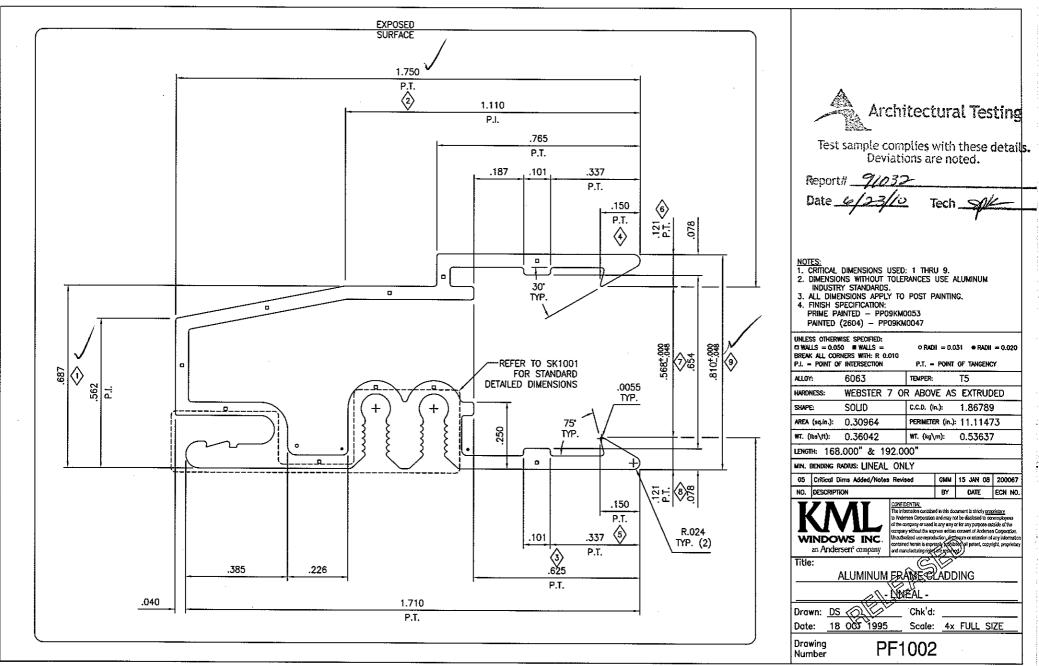



WINDOWS INC an Andersen® company	1 rocess specification	Title: Specifications for Operating Clad Casement Windows	Number: PP09KM0006 Page: 2 of 3
Issued By:	Graham Marks	Approved By: Sean Dixon	

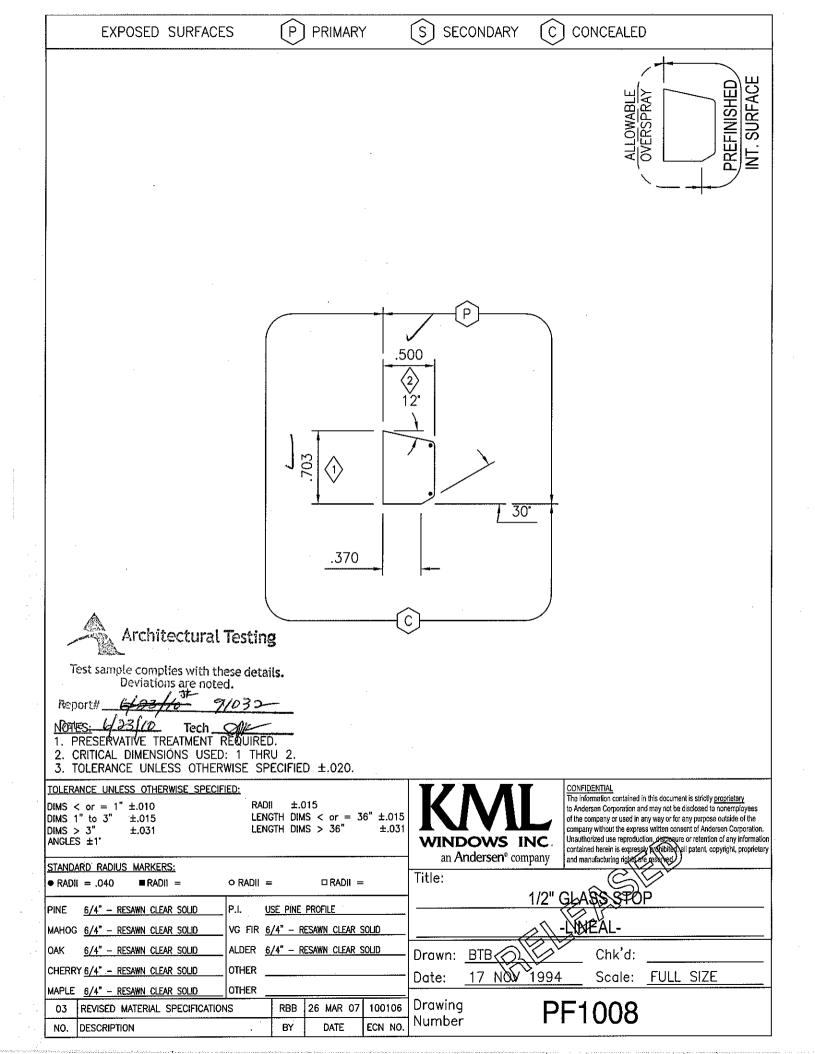

	Standard Hallmark Certified Products	Impact Certified Products (Coastal IR)			
Specifications	ANSI/AAMA/NWWDA 101/I.S.2-NAFS-02, A440- 05 & A440-08	ASTM E1886/E1996-02 Missile Level C & D Wind Zone 3 & 4			
Rating	C-C60 (LC-PG60-C) 36" x 84"	DP +50-65			
Frame Member Corner Assembly	All shapes - (3) #8 x 2" P.H., S.Q., Screws per corner.				
Frame Member Corner Sealing	Tremco 830 caulking for wood to wood corner joint.				
Springline Unit Frame Member – Leg to Curved Head Assembly Butt Joint	Castel drill method – butt joint (3 or 4 as required) #8 x 2" PH, SQ, Screws. Test sample complies with th Deviations are note				
Springline Unit Frame Member – Leg to Curved Head Sealing Butt Joint	PVA wood glue for wood to wood butt joint Date <u>6/23/10</u> Tech				
Frame Cladding Assembly & Frame Cladding Corner Assembly	1/4" x 3/8" staples @ 2" from corners & 8" O.C. maximum (2) #6 x 3/4" FH, SQ, screws per corner.				
Frame Cladding Sealing & Frame Cladding Corner	One continuous bead of Dow Corning 1199 silicone sealant in the rebate on the interior side of the wood jamb. Two continuous beads of Dow Corning 1199 silicon sealant in the rebates on the interior & exterior sides of the wood jamb.				
Sealing	Drill & pump Dow Corning 1199 silicone sealant into frame extrusion cavity at corner joints.	Drill & pump Dow Corning 1199 silicone sealant into frame extrusion cavity at corner joints.			
ash Member Corne Assembly	Mortis & Tenon joints with PVA wood glue. (1) – 7/16" x 1-1/2" x 16 GA. staples per M&T joint. (Ref. SK1919)				
Springline Unit Sash Member - Leg to Curved Head Assembly	Mortis & Tenon joints with PVA wood glue. (1) – 7/16" x 1-1/2" x 16 GA staple per M&T joint. (Ref. SK1919)				
Sash Cladding Assembly & Sash Cladding Corner Assembly	corners & 6" O.C. maximum. Curved portion on Springline have #6 x ¾" screws @ 2" from corners &	The interior glazing lip has #6 x $3/4$ " screws @ 2" from corners & 6" O.C. maximum. Curved portion on Springline have #6 x $3/4$ " screws @ 2" from corners & 6" O.C. on both interior & exterior of sash. (1) - #6 x $3/4$ " screw per corner.			
Sash Cladding Sealing & Sash	sealant under glass lip.	Two continuous beads of Dow Corning 1199 silicone sealant under glass lip and underside of sash cladding. Drill & pump Dow Corning 1199 silicone sealant into			

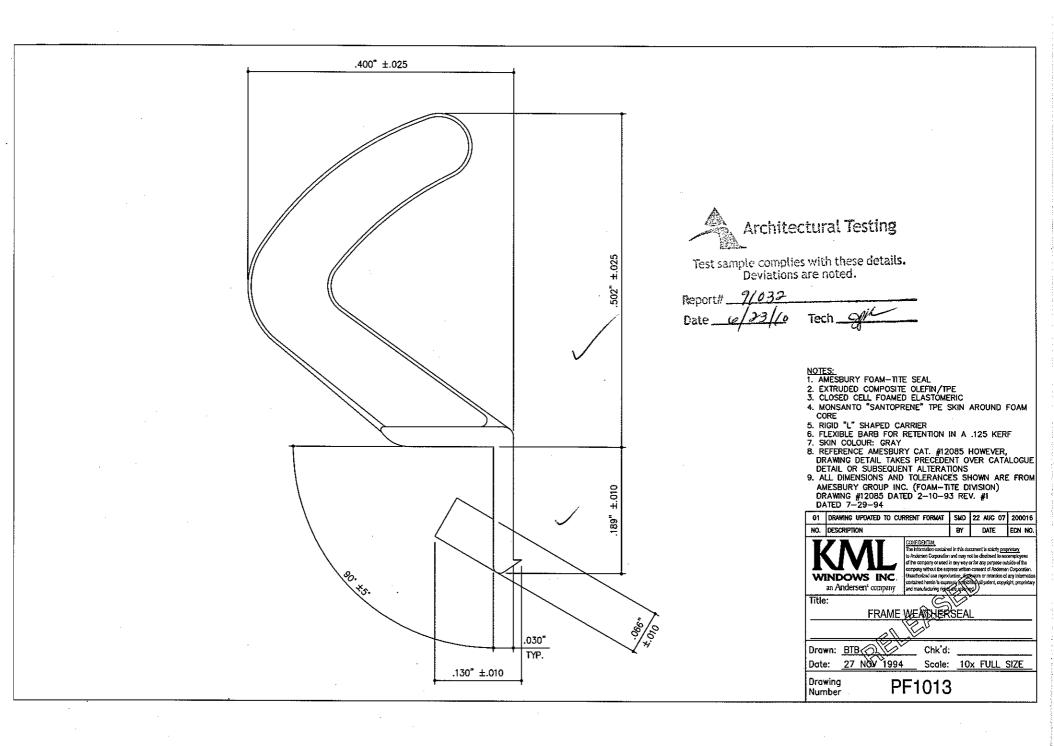

WINDOWS INC. an Andersen® company	Process Specification	-	: ifications for Operating Casement Windows	Number: PP09KM0006 Page: 3 of 3	•	
Issued By: G	raham Marks	Appr	oved By: Sean Dixon			
	Standard Hallmark Certified Produc	ts	Impact Certified Produc	ts (Coastal IR)		
Sash Stop Assembly	$\sqrt{1-1/4"}$ brad nails @ 2" from corners and 8" O.C. maximum					
Hinges	Rectangular units – concealed hinges Standard finish & corrosion resistant opt Shaped units – stainless steel butt hinge	ion 🗸	All shapes – stainless ste	el butt hinges		
Operators	Corrosion resistant fastened to the sill with (5) 1/2" FH, PD, SS, SMS)#10 x 1	Corrosion resistant fastened to th (5) #10 x 1 1/2" FH, PD, SS, SM			
Locks & Keepers	Multi-point lock & keeper system (2) #8 x 1" FH, PD, SS, SMS per lock point (1, 2 & 3 lock points) (2) #8 x 1" FH, PD, SS, SMS per keeper					
Glazing Method	Glass is set from interior against a bed of Dow Corning 1199 Gray silicone sealant. Wood glazing stops with double sided adhesiv and fastened with 1-1/4" brad nails @ 2" from and 8" O.C. maximum.	e tape corners	Glass is set from the interior aga of Dow Corning 995 structural si glazing bump-on spacers to obtai thickness. Black 995 Silicone is used for all for White cladding color option u Silicone. 995 Structural silicone is also use perimeter in the glazing cavity. Wood glazing stops with double and fastened with 1-1/4" brad na	licone sealant using in glazing bead color options accept uses White 995 ed in the full sided adhesive tape		
Glass Options	Any monolithic or Insulated unit that meets th and wind load requirements of ASTM E1300 (does not exceed the product DP rating.		and 6" O.C. maximum. Up to 35-15/16" x 84" frame size PVB/ 5/32" AN laminated glass. be used as monolithic or in an ins anneal glass. **Insul units can use Superspa metal spacer.**	use 5/32" AN/0.090 Laminated glass can sulated unit with 1/8"	scting	
Frame Size Restrictions	** <u>CAN NO</u>	84"	6" Wide Tall Test sam d either dimension**	ple complies with thes Deviations are noted.	e details.	
Frame Installation Clip Options	Standard installation clip fastened to the frame (2) #8 x ¾", FH, PD, SS, screws. Clip spacing 6" from corners and O.C. spacing as noted on production order paperwork. Sheer screw option through jamb #10 x 3" @ from corners and per Engineered O.C. spacing	g: 4" to the 4" to 6"	Coastal installation clip fastened #8 x ¾", FH, PD, SS, SMS screat 6" from corners and O.C. spacinj production order paperwork. An ¾", FH, PD, SS, SMS screws per Sheer screw option through jamb from corners and per Engineered	a snoted on the additional (2) #8 x clip shipped loose. #10 x 3" @ 4" to 6"	γí	

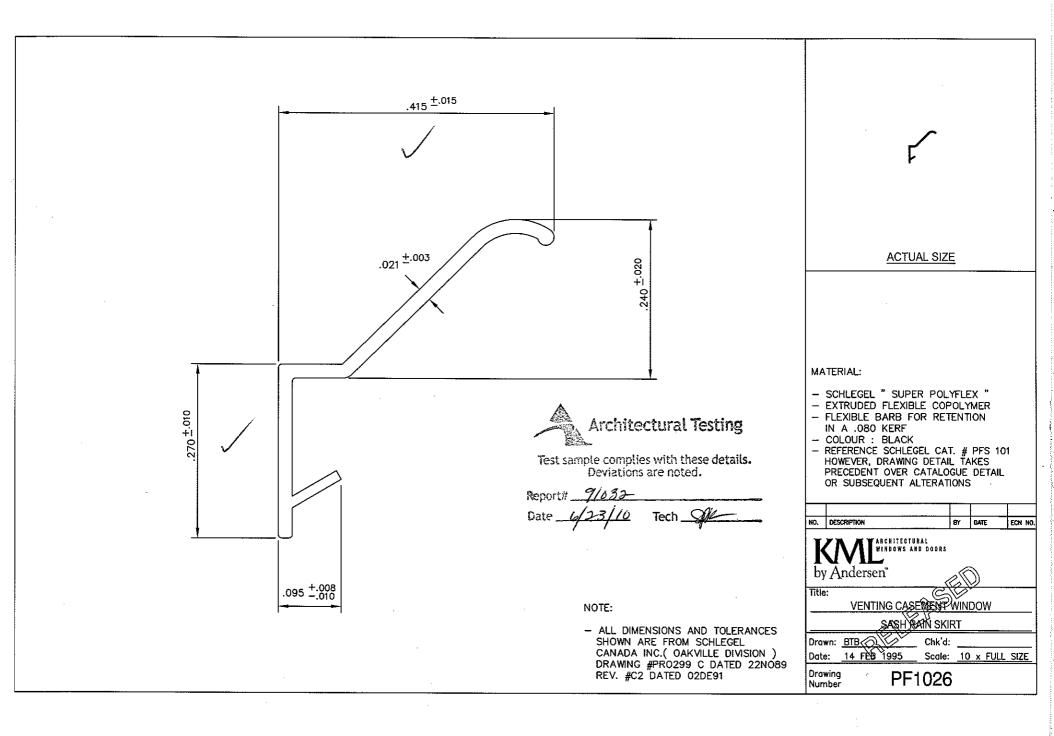
Controlled Network Version Only F4.2.3-004 Rev 8, 18-Sept-08

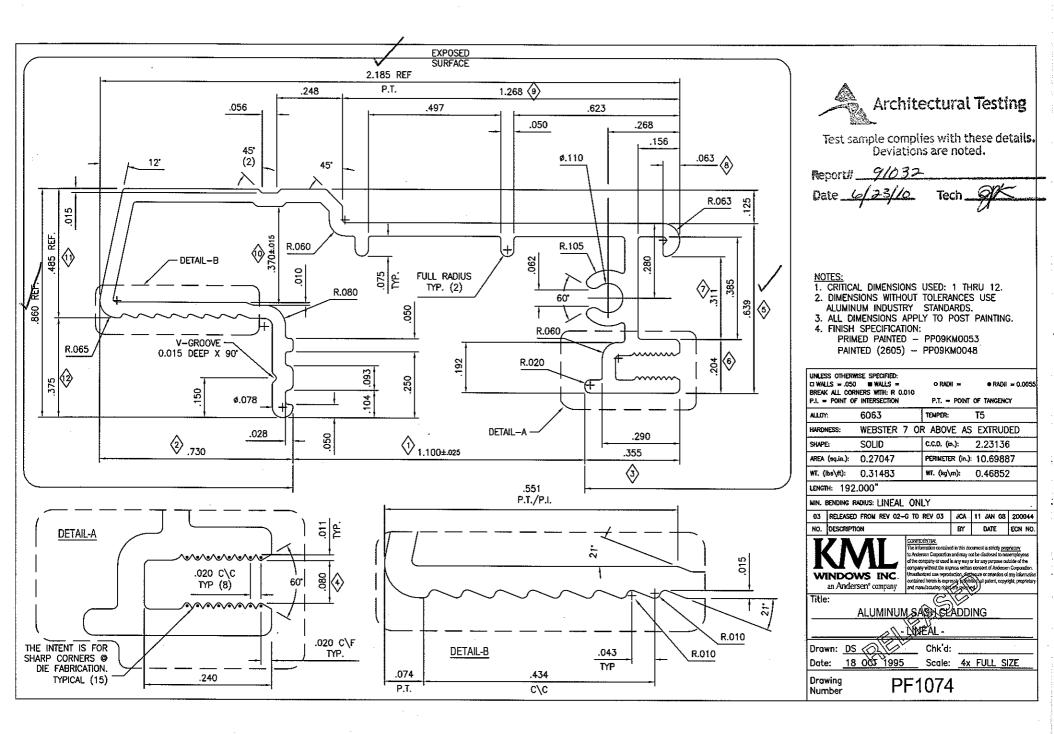


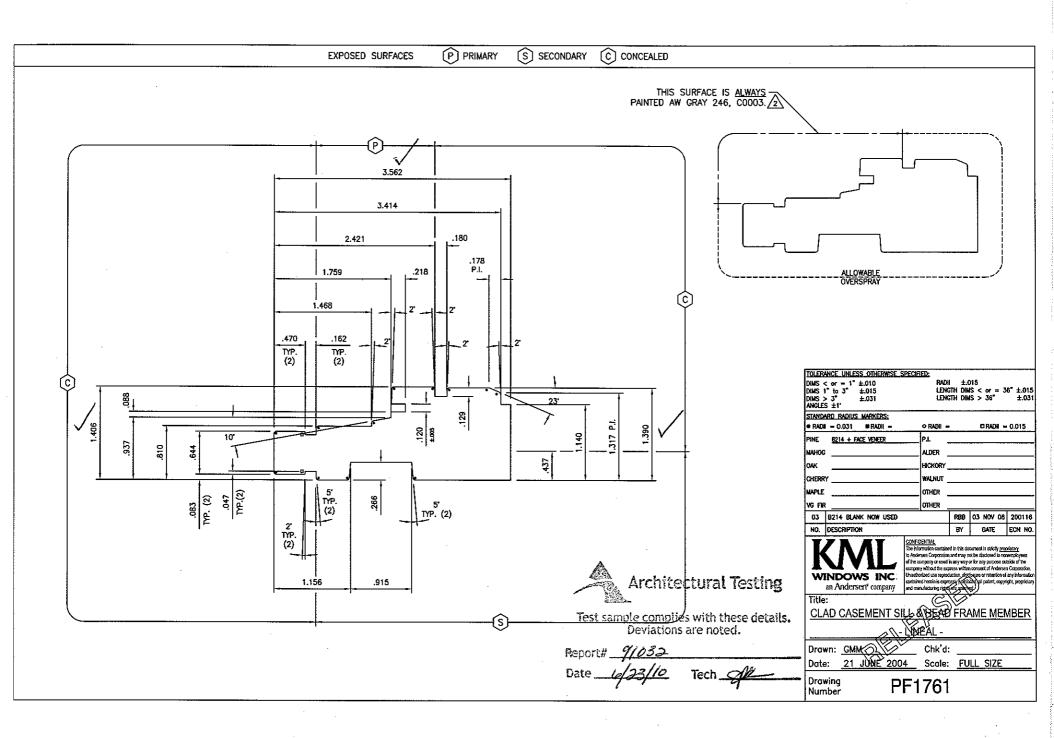
Test sample complies with these details. Deviations are noted.


133 Report# Date 10 Tech _____


UNLESS OTHERWISE SPECIFIED: LI WALLS = 0.050 WALLS = BREAK ALL CORNERS WITH: R 0.0055 P.I. = POINT OF INTERSCTION P.T. = POINT OF TANGENCY					KANGLE WINDOWS INC	e disclosed to nonemployees r any purpose outside of the usent of Andersen Corporation.	
ALLOY:	6063	TEMPER:		T5		an Andersen' company and massicating strategy and the second strategy and the second strategy and the second strategy and seco	all patent, copyright, proprietary
HARDNESS: WEBSTER 7 OR ABOVE AS EXTRUDED Title:							
SHAPE:	SOLID	C.C.D. (ir	ı.):	0.4503	5	ALUMINUM MULLION COVER F	ORA
AREA (sq.in.):	0.04785	PERIMETE	R (in.)	: 1.9339	8	BACK TO BACK MULLION	
WT. (lbs\ft):	0.05570	WT. (kg\	m):	0.0828	9		
LENGTH: 216" (18'-0")					Drawn: <u>GD</u> Chk'd;		
MEN. BENDING RADIUS: 7.000 @ CENTER LINE			Date: <u>17 DE& 1990</u> Scale: <u>2x I</u>	TULL SIZE			
05 UPDATED TO CURRENT KML FORMAT SMD 01 AUG 08 200102		Drawing PMC73					
NO. DESCRIPT	ION .		BY	DATE	ECN NO.	Number 1 101073	


NOTES: 1. CRITICAL DIMENSIONS USED: 1 THRU 3. 2. DIMENSIONS WITHOUT TOLERANCES USE ALUMINIUM INDUSTRY STANDARDS. 3. ALL DIMENSIONS APPLY TO POST PAINTING. 4. FINISH SPECIFICATION: PRIMED PAINTED - PPO9KM0053




·

